a2 United States Patent

Yamaoka

US009477578B2

(10) Patent No.:

45) Date of Patent:

US 9,477,578 B2
Oct. 25, 2016

(54) SEQUENCE-PROGRAM-DEBUGGING

(735)
(73)

")

@

(22)
(86)

87

(65)

(1)

(52)

(58)

(56)

SUPPORTING APPARATUS

Inventor: Takayuki Yamaoka, Chiyoda-ku (JP)

Assignee: Mitsubishi Electric Corporation,
Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 119 days.

Appl. No.: 14/374,816

PCT Filed: Mar. 26, 2012

PCT No.: PCT/JP2012/057826

§ 371 (e)(D),

(2), (4) Date: Jul. 25, 2014

PCT Pub. No.. W02013/145105
PCT Pub. Date: Oct. 3, 2013

Prior Publication Data
US 2015/0301923 Al Oct. 22, 2015
Int. CL.
GOG6F 9/44 (2006.01)
GOG6F 11/36 (2006.01)
GO5B 19/05 (2006.01)
U.S. CL
CPC GO6F 11/3624 (2013.01); GO5B 19/05

(2013.01); GOG6F 11/3636 (2013.01)
Field of Classification Search
CPC GOGF 11/3636; GOS5B 19/05
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

3/2002 Holzmann GOG6F 8/436

714/38.1
GO6F 11/3664

START

6,353,896 Bl *

6,502,102 B1* 12/2002 Haswell

7,203,931 B2 4/2007 Minamide et al.
8,117,587 B1* 2/2012 Testardi GO6F 8/447
717/100

2002/0059567 Al 5/2002 Minamide et al.
2003/0046016 Al™* 3/2003 Grey GO6F 11/2273
702/119
2005/0193263 Al* 9/2005 Wattcoeeennn. GO6F 11/3664
714/38.1

(Continued)

FOREIGN PATENT DOCUMENTS

DE 10116809 Al 5/2002
DE 112008001078 TS 2/2010
(Continued)

OTHER PUBLICATIONS

Communication dated May 8, 2015 from the German Patent Office
in counterpart application No. 112012006107.1.

(Continued)

Primary Examiner — Chameli Das
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

A sequence-program-debugging supporting apparatus
includes a configuration editing unit that receives a disabling
unit from a PLC, a variable retaining unit that retains
variables used by units on a sequence program, a program
editing unit that can edit the sequence program, a converting
unit that converts the sequence program into an execution
code, a searching unit that acquires variables used by the
disabling unit from the variable retaining unit and searches
for places where the acquired variables are used in the
sequence program, and a disabling setting unit that writes a
section of the execution code corresponding to the places in
a disabling section setting file as a disabling section not to
be executed, and an execution control unit that controls,
based on the disabling section setting file, an executing unit
not to execute the disabling section.

3 Claims, 12 Drawing Sheets

IN UNIT-DISPLAY EDITING UNIT, USER SELECTS UNIT
AND INSTRUCTS EXECUTION DISABLING

I~.S101

¥

VARIABLE-USE-PLACE SEARCHING UNIT ACQUIRES LIST
OF VARIABLES CORRESPONDING TO SELECTED UNIT
FROM UNIT-VARIABLE RETAINING UNIT

8102

¥

VARIABLE-USE-PLACE SEARCHING UNIT SEARCHES FOR,
IN PROGRAM, LIST OF PLACES OF USE OF
CORRESPONDING VARIABLE NAMES

5103

4

USE IN DISABLING SECTION S|

EXECUTION-DISABLING SETTING UNIT WRITES PLACES OF
ETTING FILE AS EXECUTION
DISABLING SECTION

5104

| INSTRUCT WRITING OF DISABLING SECTION SETTING FILE I\‘Sﬂ)s
IN CPU

PLC COMMUNICATION UNIT TRANSFERS (WRITES)
DISABLING SECTION SETTING FILE TO CPU

I~S106

v

EXECUTION CONTROL UNIT CONTROLS EXECUTION OF
PROGRAM ACCORDING TO WRITTEN DISABLING SECTION
SETTING FILE

5107

US 9,477,578 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS JP 11-282515 A 10/1999
Jp 2002-244703 A 8/2002
2006/0116777 Al* 6/2006 Dax et al. GO5B 19/056 Jp 2005-044316 A 2/2005
700/18 Jp 2008-059421 A 3/2008
2007/0162894 Al* 7/2007 Noller GO6F 11/3688 1P 2009-193276 A /2009
717/124 Jp 2009-223398 A 10/2009
2007/0260823 Al* 11/2007 Dickinson et al. . GO6F 11/2242 P 2010-224597 A 1072010
711/153
2010/0083235 Al 4/2010 Hozoji et al. OTHER PUBLICATIONS
2010/0153924 Al* 6/2010 Andrews GOGF 11/3688
717/126 International Search Report dated Apr. 17, 2012, issued by the
2013/0117812 Al1* 5/2013 Ponchel ...ocoovvivii. GO6F 21/552 International Searching Authority in counterpart PCT/JP2012/
726/1 057826.
2015/0160716 Al* 6/2015 Hiraoka et al. GO6F 1/3253

713/320 * cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 12 US 9,477,578 B2

FIG.1

| | % DESIRE NOT TO EXECUTE PROGRAM OF THIS UNIT

EXECUTION CODE_I

| [5)wRITE

(4) COMPILE

(1) SEARCH |[(2) SEARCH FOR
FOR RELATED ||PLACES VARIABLES|| @) EE)'(E(":‘S.}"ETDO BE
VARIABLES ARE USED

Related Art

U.S. Patent Oct. 25, 2016 Sheet 2 of 12 US 9,477,578 B2

50
| oo
| | ENGINEERING TOOL :
§ ! 3 §
3 UNIT- 3
i | | CONFIGURATION- P o :
| | | DISPLAY EDITING EonoPLAY |
! ONIT :
‘ 2 as ¢ 3
i VARIABLE-USE- :
; UNIT-VARIABLE PROGRAM :
; RETAINING UNIT PLACE SEARCHING STORING UNIT |
| f ~ |
j EXECLITION- PROGRAM 5
: DISABLING SETTING CONVERTING :
; UNIT UNIT ;
5 5 ;
| & |
: PLC 5
, COMMUNICATION :
3 UNIT ;
§ 200
. {cpu J2 A |
: PROGRAM :
] EXECUTION ;
! CONTROL. UNIT EXECUTING ;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



U.S. Patent Oct. 25, 2016 Sheet 3 of 12 US 9,477,578 B2

FIG.3

UNIT CONFIGURATION / \é é g}é 5

{/ 50000

T PARAMETER

T . POWY CPuL 1 0

T PROGRAM

/ UNIT CONFIGURATION CAN BE
DESIGNED BY SELECTING UNIT

7 FROM COMPONENTS AND

PLACING UNIT ON SETTING

e T | SCREEN
7

UNIT NAME 5/USE VARIABLE LIST

§ INPUT UNIT 1 X0, X4, X2, X3 i REGISTER LIST OF VARIABLE

: R — " SN | NAMES FOR OPERATING
CUTPUT UNIT 1 Y18, Y11, Y12, v13

UNITSINDB




U.S. Patent Oct. 25, 2016 Sheet 4 of 12 US 9,477,578 B2

FIG.4

PROGRAM CREATION

& U!‘F’D 1

—PARAMETER L HJ

a3
— o bl

— PROGRAM




U.S. Patent Oct. 25, 2016 Sheet 5 of 12 US 9,477,578 B2

FIG.S

IN UNIT-DISPLAY EDITING UNIT, USER SELECTS UNIT

AND INSTRUCTS EXECUTION DISABLING 8101

VARIABLE-USE-PLACE SEARCHING UNIT ACQUIRES LIST
OF VARIABLES CORRESPONDING TO SELECTED UNIT
FROM UNIT-VARIABLE RETAINING UNIT

VARIABLE-USE-PLACE SEARCHING UNIT SEARCHES FOR,
IN PROGRAM, LIST OF PLACES OF USE OF
CORRESPONDING VARIABLE NAMES

S103

EXECUTION-DISABLING SETTING UNIT WRITES PLACES OF
USE IN DISABLING SECTION SETTING FILE AS EXECUTION 5104
DISABLING SECTION

INSTRUCT WRITING OF DISABLING SECTION SETTING FILE §

IN CPU 105

PLC COMMUNICATION UNIT TRANGFERS (WRITES)
DISABLING SECTION SETTING FILE TO CPU

EXECUTION CONTROL UNIT CONTROLS EXECUTION OF  §
PROGRAM ACCORDING TO WRITTEN DISABLING SECTION ¢
SETTING FILE




U.S. Patent Oct. 25, 2016 Sheet 6 of 12 US 9,477,578 B2

__________________________________________________________________________________

: X0 :
T (_0) ) (Y10)___:
] X11 '

. 2 .1 (Y21) .
1 X1 ,
| ( 4) @ (Y11) |
: X12 |
S e L :
: X13 -

| CIRCUIT

:E\ 35S
',. \\\ ( 13) \ \— {END]
b N , \ } l_g\_

: ONDITION PERATION
______ BLOCK | [STEP NUMBER SECTION SECTION
e iee---° CIRCUIT |}
X0 | ELEMENT
) :i VARIABLE
1 l l S !
R CIRCUIT
SYMBOL




U.S. Patent Oct. 25, 2016 Sheet 7 of 12 US 9,477,578 B2

FIG.7

(1) SELECT UNIT FROM UNIT
CONFIGURATION DIAGRAM AND EXECUTE
EXECUTION DISABLING FROM MENU

CUT (D
COPY i)
PASTE (F} @ E

CONVERT + COMPILE (8) ,«'{"
DISABLE CIRCUIT iN USE’

UNDE (L)

&

i)

TR
I

(2) WRITE DISABLING
SECTION SETTING FILE IN
PLC

...............

DISABLING J EXECUTION|

»| SECTION ,
- | SETTING FILE p CODE
DiSABLING SECTION SETTNG FILES T

»AUTOMATK;ALLY C’JMMENT—OUT : :
[PROGRAM PORTIONS WHERE ¢ IONLY CREATED, MANUAL RE-COMPILE IS |

WARIABLES RELATED TO UNIT ARE USED!  UNNECESSARY

.....................................................




U.S. Patent Oct. 25, 2016 Sheet 8 of 12 US 9,477,578 B2

FIG.8

[UNIT VARIABLE TYPE LIST]

UNIT TYPE USE VARIABLE TYPE LIST |DATA TYPE
QO4-TYPE INPUT | INPUT, INPUT2,

ONIT INPUTS, INPUT4 BOQLTYPE
QO4-TYPE OUTPUT | OUTPUT1, OUTPUTZ,

UNIT OUTPUT3 OUTPUTA BOOL TYPE

JUNIT USE VARIABLE NAME LIST]
UNIT NAME USE VARIABLE NAME LIST {DATATYPE
INPUT UNIT 1 X0, X1, %2, X3 BOOL TYPE




U.S. Patent Oct. 25, 2016 Sheet 9 of 12 US 9,477,578 B2

FI1G.10

PLACE OF USE {CIRCUIT BLOCK) VARIABLE IN USE

CIRCUIT BLOGCK OF STEP NUMBER (D) | X0

CIRCUIT BLOCK QF STEP NUMBER (4} | X1

CIRCUIT BLOCK OF STEP NUMBER (18} { X2

FIG.11

[CORRESPONDENCE BETWEEN LADDER PROGRAM AND EXECUTION SECTION]

LADDER PROGRAM (CIRCUIT BLOCK) | START STEP NUMBER | END STEP NUMBER

CIRCUT BLOCK OF STEP NUMBER (@) 10 1
CIRCUIT BLOCK OF STEP NUMBER (7} {2 3

CIRCUHT BLOCK OF STEP NUMBER (7Y {7

[Xe]

CIRCUIT BLOCK OF STEP NUMBER (10} | 10 12




U.S. Patent Oct. 25, 2016

Sheet 10 of 12

FIG.12

[DISABLING SECTION SETTING
{(CONTENT OF DISABLING SECTION SETTING FILE)

START STEP NUMBER

END STEP NUMBER

{

1

4

5

10

12

US 9,477,578 B2



U.S. Patent Oct. 25, 2016 Sheet 11 of 12 US 9,477,578 B2

FIG.13

50
(00
| | ENGINEERING TOOL
| ! ¢ ]
3 UNIT-
L | | CONFIGURATION- S
. | | DISPLAY EDITING T ONET
: UNIT !
| 2 ¢ I
; - . VARIABLE-USE- S OGE 1
; UNIT-VARIABLE PROGRAM ;
3 RETAINING UNIT PLACE SEARCHING STORING UNIT ;
! | :
¢ 5 N
: J < :
; EXECUTION- PROGRAM
; DISABLING SETTING CONVERTING :
: UNIT UNIT
z E
E ¢
: PLC
! COMMUNICATION ;
, UNIT
§ @0
i jcPU (20 12 (11
! AUTONATIC PROGRAM
! RECOGNIZING canERR IO EXECUTING
| UNIT UNIT



U.S. Patent Oct. 25, 2016 Sheet 12 of 12 US 9,477,578 B2

FIG.14

CONNECT ENGINEERING TOOL TG (CPU OF} PLC

RECOGNIZE UNCONNECTED UNIT

VARIABLE-USE-PLACE SEARCHING UNIT ACQUIRES LIST §
OF VARIABLES CORRESPONDING TO UNCONNECTED UNIT §

-S203
FROM UNIT-VARIABLE RETAINING UNIT
VARIABLE-USE-PLACE SEARCHING UNIT SEARCHES FOR,
IN PROGRAM, LIST OF PLACES OF USE OF 5204

CORRESPONDING VARIABLE NAMES

EXECUTION-DISABLING SETTING UNIT WRITES PLACES OF
USE IN DISABLING SECTION SETTING FILE AS EXECUTION ¢
DISABLING SECTION

INSTRUCT WRITING OF DISABLING SECTION SETTING FILE §
N CPU

PLC COMMUNICATION UNIT TRANSFERS (WRITES) 8207

DISABLING SECTION SETTING FILE TO CPU

EXECUTION CONTROL UNIT CONTROLS EXECUTION OF ¢
PROGRAM ACCORDING TO WRITTEN DISABLING SECTION §
SETTING FILE




US 9,477,578 B2

1

SEQUENCE-PROGRAM-DEBUGGING
SUPPORTING APPARATUS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage of International
Application No. PCT/JP2012/057826 filed Mar. 26, 2012,
the contents of all of which are incorporated herein by
reference in their entirety.

FIELD

The present invention relates to a sequence-program-
debugging supporting apparatus.

BACKGROUND

For example, during an operation check in debugging
work for a sequence program for a programmable logic
controller (PL.C) system, when it is desired not to execute
only an operation program concerning a specific unit in the
system, it is necessary to perform a series of operation
explained below in an engineering tool in the past.

(1) Search for a list of variables used in the program
concerning a target unit. (2) Specity (a plurality of) places of
the program where the searched variables are used. (3) Make
the specified program disable (not to execute). Specifically,
perform editing operation for, for example, backing up and
deleting the program or commenting out the program. (4)
Compile the program (into an execution code). (5) Write the
compiled execution code in a programmable logic controller
(PLC). (6) Restart the programmable logic controller (PLC).

For example, Patent Literature 1 discloses a technology
for disabling execution of a specific step.

CITATION LIST
Patent Literature

Patent Literature 1: Japanese Patent Application Laid-Open
No. 2008-59421

SUMMARY
Technical Problem

As explained above, according to the related art, there is
a problem in that man-hour of the debugging work for the
sequence program increases.

The present invention has been devised in view of the
above and it is an object of the present invention to obtain
a sequence-program-debugging supporting apparatus
capable of greatly reducing man-hour of debugging work for
a sequence program for performing an operation check
without executing a program related to a specific unit.

Solution to Problem

The present invention is directed to a sequence-program-
debugging supporting apparatus that achieves the object.
The sequence-program-debugging supporting apparatus
includes an engineering tool. The engineering tool includes
a unit-configuration-display editing unit that receives a
disabling unit selected by a user from units included in a
programmable logic controller; a unit-variable retaining unit
that retains, for each of the units, variable used by the units

10

15

20

25

30

35

40

45

50

55

60

65

2

on a sequence program executed by the programmable logic
controller; a program-display editing unit with which the
user can edit the sequence program; a program storing unit
that stores the sequence program; a program converting unit
that converts the sequence program into an execution code
executable by a program executing unit of the program-
mable logic controller; a variable-use-place searching unit
that acquires variables used by the disabling unit from the
unit-variable retaining unit and searches for places where the
acquired variables are used in the sequence program; and an
execution-disabling setting unit that writes a section of the
execution code corresponding to the places in a disabling
section setting file, as a disabling section not to be executed.
The sequence-program-debugging supporting apparatus fur-
ther includes an execution control unit that controls, on the
basis of the disabling section setting file, the program
executing unit not to execute the disabling section.

Advantageous Effects of Invention

The sequence-program-debugging supporting apparatus
according to the present invention has an effect that it is
possible to greatly reduce man-hour of debugging work for
a sequence program.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram of operation necessary when it is
desired not to execute only an operation program concerning
a specific unit in an engineering tool in the past.

FIG. 2 is a diagram of a basic configuration of a sequence-
program-debugging supporting apparatus according to a first
embodiment.

FIG. 3 is a diagram of an image of a unit-configuration-
display editing unit according to the first embodiment.

FIG. 4 is a diagram of an image in which a ladder program
is displayed in a program-display editing unit (a ladder
editor).

FIG. 5 is a diagram of a processing flow for explaining the
operation of the sequence-program-debugging supporting
apparatus in the first embodiment.

FIG. 6 is a diagram of a state of a basic configuration of
the ladder program

FIG. 7 is a diagram of a state of operation by a user and
the operation of the sequence-program-debugging support-
ing apparatus according to the first embodiment.

FIG. 8 is a diagram of a unit variable type list, which is
a list of types of variables for each of unit types.

FIG. 9 is a diagram of a unit use variable name list, which
is a list of unit names and variable names of the unit names
in a PLC system.

FIG. 10 is a diagram of places where variables used by a
selected unit are used in a sequence program.

FIG. 11 is a diagram of correspondence between a
sequence program (a ladder program) and an execution
code.

FIG. 12 is a diagram of contents of a disabling section
setting file.

FIG. 13 is a diagram of a basic configuration of a
sequence-program-debugging supporting apparatus accord-
ing to a second embodiment.

FIG. 14 is a diagram of a processing flow for explaining
the operation of the sequence-program-debugging support-
ing apparatus in the second embodiment.

DESCRIPTION OF EMBODIMENTS

For example, during an operation check in debugging
work for a sequence program for a programmable logic



US 9,477,578 B2

3

controller (PL.C) system, when it is desired not to execute
only an operation program concerning a specific unit in the
system, it is necessary to perform a series of operation
shown in FIG. 1 explained below in an engineering tool in
the past.

First, in (1) in FIG. 1, search for a list of variables used
in the program concerning a target unit. In (2), specity (a
plurality of) places of the program where the searched
variables are used. In (3), edit the program not to execute the
specified program. Specifically, perform editing operation
for, for example, backing up and deleting the program or
commenting out the program. In (4), compile the program
(into an execution code). In (5), write the compiled execu-
tion code in a programmable logic controller (PLC). Lastly,
in (6), restart the programmable logic controller (PLC).

As explained above, in the engineering tool in the past,
there is a problem in that man-hour of the debugging work
increases.

A sequence-program-debugging supporting apparatus 50
in FIG. 2 according to embodiments of the present invention
is explained in detail below on the basis of the drawings.
Note that the present invention is not limited by the embodi-
ments.

First Embodiment

A basic configuration of the sequence-program-debug-
ging supporting apparatus 50 according to a first embodi-
ment of the present invention is shown in FIG. 2. As a basic
configuration for realizing the sequence-program-debugging
supporting apparatus 50, a configuration including an engi-
neering tool 100, which is a personal computer or the like
installed with engineering tool software, and a CPU 200
(hardware) of a programmable logic controller (PLC), which
executes a program created by the engineering tool 100, is
conceivable. The CPU 200 is a part of a programmable logic
controller (PL.C) main body (the entire main body is not
shown).

An overview of the components is explained below. The
engineering tool 100 is a tool for editing a program operated
in a PLC system. The engineering tool 100 can be realized
by, for example, a personal computer or the like installed
with engineering tool software. The engineering tool 100
includes processing units explained below.

Unit-Configuration-Display Editing Unit 1:

A unit-configuration-display editing unit 1 is an editor that
can set a unit configuration used in the PLC system. An
image of the unit-configuration-display editing unit 1 is
shown in FIG. 3. Units that can be set as components in the
unit-configuration-display editing unit 1 include an input/
output unit, an AD conversion unit, and a positioning unit.
The unit-configuration-display editing unit 1 can receive a
disabling unit selected by a user from units included in the
PLC system.

Unit-Variable Retaining Unit 2:

A unit-variable retaining unit 2 retains correspondence
between units and a list of variables for operating the units
as, for example, a database (DB). For example, information
indicating that, for example, variables having names “XO0,
X1, X2, and X3” correspond to “input unit 1 as shown in
FIG. 3 is retained in the unit-variable retaining unit 2 as a
database. The unit-variable retaining unit 2 is included in a
storage of the personal computer installed with the engi-
neering tool software, a storage device, or the like.

Program-Display Editing Unit 3:

A program-display editing unit 3 is an editor that can edit
a program code executed by the CPU 200. In the PLC

5

10

15

20

25

30

35

40

45

50

55

60

65

4

system, a ladder language is often used. Therefore, an image
of the program-display editing unit 3 corresponding to the
ladder language is shown in FIG. 4.

Program Storing Unit 4:

A program storing unit 4 stores the program code created
by the program-display editing unit 3. For example, basic
constituent elements of the program code created by the
ladder language are a circuit symbol and a variable. The
circuit symbol represents processing in the PLC system such
as a contact and a coil. The variable represents a target of the
processing. The program storing unit 4 is included in the
storage of the personal computer installed with the engi-
neering tool software, the storage device, or the like.

Program Converting Unit 5:

A program converting unit 5 is, specifically, a compiler.
The program converting unit 5 converts the program code
retained in the program storing unit 4 into an execution code
executable by the CPU 200. The execution code is an
arrangement of processing executed by the CPU 200 and is
represented as a sequence of commands including instruc-
tions and operands of the instructions. Numbers (hereinafter
referred to as “step numbers”) equivalent to execution order
are given to the commands in the command sequence.

Variable-Use-Place Searching Unit 6:

A variable-use-place searching unit 6 designates a vari-
able and a program and searches for and outputs a list of
places where the variable is used in the program. For
example, when a variable “X0” is used in a fifth circuit
symbol in a later program (a program written in the ladder
language) retained in the program storing unit 4, the vari-
able-use-place searching unit 6 outputs a result “fifth” as a
use place search result of “X0”.

Execution-Disabling Setting Unit 7:

A execution-disabling setting unit 7 sets a section not to
be executed (a disabling section) in an execution code and
writes the section in a disabling section setting file. As a
designation method for the disabling section, for example,
there is a method of designating a start step number and an
end step number in a target execution code.

PLC Communication Unit 8:

A PLC communication unit 8 provides a function for
writing the execution code and the disabling section setting
file.

The processing units of the CPU 200 are explained. The
CPU 200 is hardware for executing the execution code and
includes a program executing unit 11 and an execution
control unit 12.

Program Executing Unit 11:

The program executing unit 11 is hardware of a core
portion of the CPU 200 that executes processing of the
execution code.

Execution Control Unit 12:

The execution control unit 12 reads the content of the
disabling section setting file and controls execution by the
program executing unit 11 according to the content. For
example, the execution control unit 12 can perform execu-
tion control of content “the execution code from a step
number 5 to a step number 10 is not executed”. The function
of the execution control unit 12 is realized as a function of
an OS or firmware operating on the CPU 200.

A function for “not executing a program related to a
specific unit” during debugging of a program for the PLC
system is realized by the sequence-program-debugging sup-
porting apparatus 50 including the configuration explained
above. When it is desired to check an operation performed
when a specific unit is removed from the PLC system
because of a trouble or the like, such a function is demanded



US 9,477,578 B2

5

such that the user can disable execution of a program used
by the specific unit and check the operation. As precondi-
tions for the function, registration of unit variables as a list,
creation of a ladder program, and writing of an execution
code explained below need to be performed.

(Registration of Unit Variables as a List)

To build the PLC system, it is necessary to determine a
unit configuration such as a power supply, a CPU, and
input/output. An image of operation for creating the unit
configuration is explained with reference to FIG. 3 as an
example. The unit configuration is created by repeating drag
and drop of units from a component list in the unit-configu-
ration-display editing unit 1.

In creating the unit configuration, a list of variables for
operating selected and arranged units is registered in the
unit-variable retaining unit 2. It is assumed that a “unit
variable type list” (FIG. 8), which is a list of types of
variables, prepared for operating selected units is retained in
advance in a database or the like of the unit-variable
retaining unit 2 as information corresponding to the units. A
“unit type” in FIG. 8 means a product name. When the unit
configuration is created, processing for reading out [unit
variable type lists] of selected units, giving specific variable
names to the [unit variable type lists], and recording a [unit
use variable name list] (FIG. 9), which is a correspondence
between a list of the variable names and unit names, in the
unit-variable retaining unit 2 is performed. A “unit name” in
FIG. 9 is a name of a unit in the PLC system. In FIG. 9, a
generation image of data obtained when “operation for
selecting a ‘Q04-type input unit’ and adding the ‘Q04-type
input unit’ to the unit configuration” is performed in the
unit-configuration-display editing unit 1 shown in FIG. 3 is
shown. When the “Q04-type input unit” is selected from the
component list, content of FIG. 9 including the list of
variables used for operating the unit is added and recorded
in the unit-variable retaining unit 2 on the basis of a first row
of FIG. 8.

(Creation of a Ladder Program)

A ladder program is created using a ladder editor as a
specific example of the program-display editing unit 3. An
image in which a ladder program is displayed in the pro-
gram-display editing unit 3 (the ladder editor) is shown in
FIG. 4. A state of a basic configuration of the ladder program
is shown in FIG. 6. The basic configuration of the ladder
program is explained with reference to FIG. 6. For simpli-
fication of the explanation, it is assumed that circuit ele-
ments, which are elements of the ladder program, are only
a contact (an “a” contact) and a coil. This embodiment is
also effective for ladder programs in which other circuit
symbols (instructions) are used.

An overview of the ladder program is explained. As
shown in FIG. 6, in the ladder program, “circuit blocks” are
arranged in execution order. The circuit block includes one
“condition section” and one “operation section”. The “con-
dition section” is a group of circuits, contacts of which are
connected in series or in parallel. The “operation section” is
a group of circuits, coils of which are connected in series.
“Step numbers” are attached to the “circuit blocks”. The
“step numbers” are identifiers for specifying the “circuit
blocks” in the entire program and indicate execution order in
the PLC system.

An operation in one “circuit block” executes the “opera-
tion section” of the “circuit block” when the “condition
section” of the “circuit block™ is conducted. Therefore, in
debugging work for the ladder program, when it is desired
not to execute a specific “circuit block”, a method of, for

40

45

55

6

example, connecting a connect, which is always OFF (non-
conducted), to the “condition section” in series has been
adopted.

The contact and the coil are referred to as circuit elements.
The circuit elements include circuit symbols and variables.
The circuit symbols are symbols representing types of the
contact and the coil. In the execution code, the circuit
symbols are equivalent to instructions.

The variables represent data set as processing targets of
the circuit symbols (the instructions). Variable names reg-
istered in the [unit use variable name list] can be used.
Circuit elements encircled in FIG. 6 are places where
variable names corresponding to an “input unit 1” in FIG. 9
are used.

The created ladder program has a data structure in which
the “circuit blocks” in which variables used for operating the
units are used can be searched. The ladder program is stored
in the program storing unit 4.

Note that, in this embodiment, the ladder program is
explained as an example. However, when other program-
ming languages such as an ST (Structured Text) and an FBD
(Function Block Diagram) are used, the sequence-program-
debugging supporting apparatus according to this embodi-
ment can also be realized and the same effects can be
obtained.

(Writing of an Execution Code)

The created ladder program is converted into an execution
code, which is executable by the CPU 200, by the program
converting unit 5 (the compiler). The execution code is
written in the CPU 200 by the PLC communication unit 8
and is in an executable state.

On the basis of the above, a function for “not executing
a program related to a specific unit” during debugging of a
program for the PL.C system is realized by the sequenced-
program-debugging supporting apparatus 50. Operation by
the user and the operation of the sequence-program-debug-
ging supporting apparatus 50 in realizing this function are
explained below with reference to FIG. 5 of a processing
flow and FIG. 7 of a state of processing.

(Execution Disabling Operation for a Program that Uses
a Unit)

First, at step S101 in FIG. 5, the user disables execution
of'a program that uses a specific unit. An operation image at
this point is an operation image shown in “(1) select a unit
from a unit configuration diagram and execute execution
disabling from a menu” in FIG. 7. Specifically, the user
selects a unit on a unit configuration diagram of the unit-
configuration-display editing unit 1 and executes “disabling
of a circuit in use” in the menu. This operation can be also
performed using a key or a tool bar button. The unit-
configuration-display editing unit 1, which receives an iden-
tifier (a unit name) of the selected unit, notifies the variable-
use-place searching unit 6 of the identifier (the unit name) of
the unit.

(Acquisition of a List of Variables Corresponding to the
Unit)

The variable-use-place searching unit 6 notified of the
identifier (the unit name) of the unit acquires a list of unit
variables used by the unit from the unit-variable retaining
unit 2 (step S102). Specifically, for example, if the notified
unit name is “input unit 17, the variable-use-place searching
unit 6 acquires, using the unit name as a key, a use variable
name list from FIG. 9 registered in the (registration of a list
of unit variables) explained above. Therefore, in this
example, the variable-use-place searching unit 6 acquires
four variables “X0, X1, X2, and X3”.



US 9,477,578 B2

7

(Search for a Variable Use Place List)

The variable-use-place searching unit 6 searches for,
concerning the four variables acquired in the (acquisition of
a variable list corresponding to the unit), a list of places
where the variables are used in the program (step S103).
Note that, for a reduction in a debugging work time, the user
can be enabled to select a variable to be disabled out of the
acquired four variables. That is, an option for searching for,
concerning only the variable selected by the user out of the
four variables, a list of places where the variable is used in
the program can be added. For example, the option is an
option for enabling the user to designate that, for example,
a variable corresponding to an input device is used (not
disabled) but a variable corresponding to an output device is
not used (disabled). When such an option is not added, the
variable-use-place searching unit 6 searches for, concerning
each of all the acquired four variables, places of use in the
ladder program shown in FIG. 6. As a result, in an example
of the ladder program shown in FIG. 6, variables in three
places shown in FIG. 10 are obtained. Circuit blocks, which
are the places of use, are found. The variable hit by the
search are encircled and shown in FIG. 6. Note that, in the
example explained in this embodiment, one ladder program
is set as the target. However, this system is also effective
when a plurality of programs is set as targets.

(Execution Disabling Setting for the Places of Use)

The execution-disabling setting unit 7 sets, concerning the
three places in the ladder program shown in FIG. 6 where the
variables found in the “search for a variable use place list)
are used, a section of the execution code corresponding to
the places as a section not to be executed, that is, a disabling
second and writes the disabling section in a disabling section
setting file (step S104). For example, it is assumed that an
execution code of the target ladder program is recorded in a
structure such as [correspondence between a ladder program
and an execution section]| shown in FIG. 11. Writing in the
disabling section setting file can be realized by acquiring
start step numbers and end step numbers of the three circuit
blocks, which are the search result of the (search for a
variable use place list), and writing the start step numbers
and the end step numbers to [disabling section setting”
shown in FIG. 12.

Note that, in the explanation in this embodiment, the
disabling section created from the search result in the
(search for a variable use place list) is written in the
disabling section setting file in which no setting is described
in the beginning. However, this system is also effective
when a disabling section is added anew to a disabling section
already written in the disabling section setting file and when
a disabling section is rewritten.

(Instruction to Write the Disabling Section Setting in the
CPU)

The user performs operation for writing the disabling
section setting file created in the paragraph (execution
disabling setting for the places of use) into the CPU 200.
This operation can be realized by operation equivalent to
operation such as “Write to PLC” or “Online Program
Change” of the related art. Specifically, in the engineering
tool 100 that receives an instruction of the user (step S105),
the PLC communication unit 8 writes (transfers) the dis-
abling section setting file in the CPU 200 (step S106). Note
that this operation is executable even if the user does not
give an instruction to the engineering tool 100, that is, even
if step S105 is omitted. Specifically, when the disabling
section setting file is updated in the “execution disabling
setting for the places of use), the engineering tool 100 (the
PLC communication unit 8) can automatically perform

25

40

45

50

55

8

writing processing in the CPU 200 (step S106). A state of
this processing is shown in “(2) write disabling section
setting file in PLC” in FIG. 7.

(Execution Control for a Program Under Execution)

The CPU 200, which receives the disabling section setting
file in the (instruction to write the disabling section setting
in the CPU) (in which the disabling section setting file is
written), controls, according to content of the disabling
section setting, execution of an execution code being
executed by the execution control unit 12 (step S107).
Consequently, non-execution of the program in the places
related to the unit selected in the (execution disabling
operation for a program that uses a program). Specifically,
the execution control unit 12 stops the execution of the
execution code at a step number designated by a start step
number of a disabling section (a break point function in the
past) and then skips the execution to an end step number of
the disabling section and continues the execution from the
next step number.

Note that, when the execution control unit 12 performs the
control, it can adjust execution speed in the case of disabling
of the program by making it possible to designate a sleep
time of the PLC system during non-execution of the pro-
gram. For example, when it is desired to execute the
program early, the execution control unit 12 can set the sleep
time=0. However, when it is desired to execute the program
at actual speed, the execution control unit 12 can estimate a
sleep time from the number of steps of non-execution and
cause the PLC system to sleep during the sleep time.
Consequently, it is possible to reduce an execution time and
make a debugging time efficient. Moreover, if the execution
control unit 12 estimates a sleep time from the number of
steps of non-execution and causes the PLC system to sleep,
it is possible to simulate an execution state of a slowest case.
That is, it is possible to perform debugging while simulating
various environments.

As explained above, in the sequence-program-debugging
supporting apparatus 50 according to the embodiment of the
present invention, not to execute only an operation program
related to a specific unit in a sequence program, the follow-
ing three points are automatically executed.

(1) Acquire a list of variables related to a target unit.

(2) Acquire information concerning places (sections) in the
sequence program where variables are used.

(3) Write setting for disabling execution concerning the
places (the sections) acquired in (2) in a file without chang-
ing the sequence program and an execution code corre-
sponding to the sequence program.

Consequently, the user can realize non-execution of an
operation program related to a specific unit only by (1)
selecting a target unit in a menu screen or the like and
instructing execution disabling and (2) instructing to write,
in a PLC, a file in which a disabling section is set (the
instruction can be omitted when the sequence-program-
debugging supporting apparatus is caused to automatically
execute the instruction).

As aresult, it is possible to collectively disable execution
of portions related to the unit. Therefore, compared with a
program correction work time in manually disabling the
portions, it is possible to markedly reduce man-hour.
Because the sequence-program-debugging supporting appa-
ratus 50 manages information related to the unit, it is
possible to reduce errors in determination and operation by
a human. Therefore, compared with manual comment-out
work, it is possible to reduce the number of times of work.
Further, because the setting of the execution disabling
according to this embodiment can be realized by a function



US 9,477,578 B2

9

of skipping a specific place of an existing execution code,
the execution code is not changed. Therefore, the restart of
the PLC in the past is unnecessary. Consequently, there is an
effect that it is possible to reduce time for debugging work,
that is, reduce a work time for creation of a sequence
program including the debugging work and make the debug-
ging work efficient.

Second Embodiment

In the first embodiment, in the (execution disabling opera-
tion for a program that uses a unit), the user manually
selects, on the unit configuration diagram, a unit that the user
desires to disable. However, it is also conceivable to omit
this operation when a unit not mounted on a real machine
system of the PLC is present.

In this embodiment, as shown in FIG. 13, an automatic
recognizing unit 20 that has a function of automatically
recognizing a unit (an unconnected unit) not mounted on a
programmable logic controller (PLC) is included in the
sequence-program-debugging supporting apparatus 50. The
automatic recognizing unit 20 can be present only on the
CPU 200 (hardware) side as shown in FIG. 13 and inform
the engineering tool 100 (software) of a recognition result or
can be shared by the CPU 200 and the engineering tool 100.
An operation flow in this embodiment including the opera-
tion of the sequence-program-debugging supporting appa-
ratus 50 is shown in FIG. 14.

First, at step S201 in FIG. 14, the engineering tool 100 is
connected to (the CPU 200 of) the PL.C by USB connection
or network connection. Then, the sequence-program-debug-
ging supporting apparatus 50 automatically recognizes a
system configuration as explained above on the basis of a
connection state of the PLC. Consequently, the sequence-
program-debugging supporting apparatus 50 recognizes an
unconnected unit arranged on the unit configuration diagram
of the unit-configuration-display editing unit 1 shown in
FIG. 7 but not connected to the real machine of the PLC
(step S202). The wvariable-use-place searching unit 6
informed of an identifier (a unit name) of the unconnected
unit, that is, an automatic recognition result acquires a list of
unit variables used by the unconnected unit from the unit-
variable retaining unit 2 (step S203).

That is, in the second embodiment, a unit automatically
recognized as the unconnected unit is treated as the unit
selected by the user in the first embodiment. Therefore,
subsequent steps S204 to S208 are the same as steps S103
to S107 in FIG. 5. Note that, in this embodiment, when the
unconnected unit is connected, that is, a sequence program
(e.g., a ladder program) of a PL.C system shown on the unit
configuration diagram of the unit-configuration-display edit-
ing unit 1 is converted into an execution code by the
program converting unit 5 and written in the CPU 200 in
advance and is in an executable state. Further, if step S206
is omitted as in the first embodiment, when a unit mounted
on a real machine system of a PL.C is present, it is possible
to substantially automatically fully automatically create an
execution code of a sequence program corresponding to the
PLC.

In the explanation in the first and second embodiments,
variables to be disabled are selected in units of a unit first.
However, rather than selecting a unit from the beginning, it
is also possible to designate variable in the beginning on the
basis of a cross reference result (a search result) or the like
and enable commend-out switching of a program (an execu-
tion code) that uses the variables. During creation of a
sequence program, for example, by combining a scheme

10

20

40

45

50

55

10

same as a macro of a C language (e.g., a scheme such as
“#ifdef DEBUG create a disabling section setting file”, it is
possible to write a program for causing the execution-
disabling setting unit 7 to operate only during debugging and
executing creation of a disabling section setting file. Con-
sequently, it is possible to flexibly customize a portion,
execution and non-execution of which are desired to be
switched, of the execution code can be flexibly customized
according to the comment-out operation according to the
embodiment. Therefore, it is possible to make the debugging
work more efficient.

Further, the present invention is not limited to the embodi-
ment and can be variously modified without departing from
the spirit of the present invention in an implementation
stage. Inventions in various stages are included in the
embodiments. Various inventions can be extracted according
to appropriate combination in the disclosed constituent
elements. For example, even if several constituent elements
are deleted from all the constituent elements described in the
embodiments, when the problems explained in the section of
the technical problem can be solved and the effects
explained in the advantageous effects of invention can be
obtained, a configuration from which the constituent ele-
ments are deleted can be extracted as an invention. Further,
the constituent elements described in the different embodi-
ments can be combined as appropriate.

INDUSTRIAL APPLICABILITY

As explained above, the sequence-program-debugging
supporting apparatus according to the present invention is
useful for debugging work for a sequence program of a PLC
system and, in particular, suitable for debugging work for a
sequence program that uses an engineering tool.

REFERENCE SIGNS LIST

1 Unit-configuration-display editing unit
2 Unit-variable retaining unit

3 Program-display editing unit

4 Program storing unit

5 Program converting unit

6 Variable-use-place searching unit

7 Execution-disabling setting unit

8 PLC communication unit

11 Program executing unit

12 Execution control unit

20 Automatic recognizing unit

50 Sequence-program-debugging supporting apparatus
100 Engineering tool

200 CPU

S101 to S107, S201 to S208 Steps

The invention claimed is:

1. A sequence-program-debugging supporting apparatus
comprising:

an engineering tool including:

a unit-configuration-display editing unit that receives a
disabled unit selected by a user from units included
in a programmable logic controller;

aunit-variable retaining unit that retains, for each of the
units, a variable used by the units on a sequence
program executed by the programmable logic con-
troller;

a program-display editing unit with which the user can
edit the sequence program;

a program storing unit that stores the sequence pro-
gram;



US 9,477,578 B2

11

a program converting unit that converts the sequence
program into an execution code executable by a
program executing unit of the programmable logic
controller;

a variable-use-place searching unit that acquires vari-
ables used by the disabled unit from the unit-variable
retaining unit and searches for places where the
acquired variables are used in the sequence program;
and

an execution-disabling setting unit that writes a section
of the execution code corresponding to the places in
a disabled section setting file, as a disabled section
not to be executed; and

an execution control unit that controls, on the basis of the

disabled section setting file, the program executing unit

not to execute the disabled section.

2. The sequence-program-debugging supporting appara-
tus according to claim 1, further comprising an automatic
recognizing unit that recognizes, as an unconnected unit, a
unit not connected to the programmable logic controller,

wherein the variable-use-place searching unit sets, as the

disabled unit, the unconnected unit recognized by the
automatic recognizing unit.

3. The sequence-program-debugging supporting appara-
tus according to claim 1, wherein the variable-use-place
searching unit searches for a place where a variable selected
by the user out of the acquired variables is used in the
sequence program.

10

15

20

25

12



